GA-Based Parameter Tuning for Multi-Agent Systems

Joseph Haas
Drexel University
Dept. of Computer Science
Philadelphia PA 19104

jjh49@drexel.edu

Categories and Subject Descriptors: D.2.9
General Terms: Management, performance, algorithms.

Keywords: Software agents, GA optimization.

1. PROBLEM FORMULATION

Motivation. A MANET is a challenging environment for
software system designers due to its dynamism and unpre-
dictable nature. Network links can go up and down de-
pending on a variety of physical factors, such as movement
of hosts, terrain, weather, interference, or available battery
power. Agent based systems, with their runtime flexibility,
can adapt to such environments better than centralized sys-
tems [4]. On the other hand, the tuning and control of the
agent based system is more complicated, due to the flexible
and decentralized nature of Multi-Agent Systems (MAS).
Since it is unlikely that the optimal agent population com-
position can be derived theoretically, a search based tech-
nique should be used to find acceptable suboptimal solu-
tions rather then guaranteed optimal ones. Many references
to the example of information dissemination or collection by
agent based systems will be used throughout this paper. En-
vision a distributed system of mobile wireless devices used
by first responders rushing to the site of a natural disaster,
a police unit in a crowd control situation, or military ur-
ban operation unit where information about the individual
units should be collected and disseminated to a restricted
subset of the team members [1]. Such information can in-
clude, but is not limited to, the status of the networked
device (i.e., remaining battery life, CPU load and memory
usage), sensory information or even biometrics of the users
if the device is equipped with appropriate sensors. If units
have GPS capabilities, then the problem of disseminating
that information becomes a “blue force tracking problem”
i.e., problem of tracking friendly forces location on the bat-
tlefield. Clearly optimal performance of such systems is of
critical importance to their users.

Proposed Approachin order to address this problem of
on-line software configuration, a GA based search with eval-
uations, performed by an on-board network simulator, is
used. The management computing device reads the cur-
rent network topology and forwards the data to the Network
Simulator. The GA performs the optimization of the agent
population based on the fitness evaluated by the simulation

Copyright is held by the author/owner.
GECCO’05,June 25-29, 2005, Washington, DC, USA.
ACM 1-59593-010-8/05/0006.

Maxim Peysakhov
Drexel University
Dept. of Computer Science
Philadelphia PA 19104

maxim@drexel.edu

1085

Spiros Mancoridis
Drexel University
Dept. of Computer Science
Philadelphia PA 19104

mancors@drexel.edu

runs. Once desired levels of the parameter under optimiza-
tion are achieved the Agent Manager block removes the old
agent population and releases the new one onto the network.
The overall design of the system is shown in Figure 1(a). In
order to simulate normal network traffic, several steps are
taken. Each link is given an amount of available bandwidth
and weight, and the all pairs shortest path (Floyd-Warshall)
algorithm is used to determine the routes on the simulated
network. A typical load level for each link was determined
by the assumption of constant communication flow between
hosts using the shortest path routes. This level defined the
amount of bandwidth left available on each link. The most
loaded link had 20% of its bandwidth available and the rest
of the links’ bandwidth usage was inversely proportional to
the number of communicating host pairs.

2. EMPIRICAL VALIDATION

In order to validate the proposed approach, we considered
the following information dissemination problem. Each host
on the network is a source and a sink for a specific kind
of data. For example, each host needs to keep all other
hosts updated about its own current position. In order to
achieve this a swarm of randomly wandering agents can be
used. That update is rather scalable, robust to unexpected
events, and completely decentralized [2]. Each agent can
hold information about a certain number of nodes, up to as
many nodes as in the network. Agents with large memory
sizes take long to process and transmit. Agents with small
memory sizes take less time, but sometimes cannot update
the necessary number of nodes, thus an appropriate amount
of each must be found.

Evaluation. In order to evaluate the process of the infor-
mation dissemination by agents, we measure how up-to-date
the information is on each host. Each host utilized a mem-
ory status list that contained the time of the last received
update from every other host. The longest time without an
update was considered to be the measure of how out-of-date
that host was. The average of these numbers over the set of
all hosts was considered the measure of how out-of-date the
whole system was:

ZveH(maXZeH(tuz?d))
|H|

It was usually necessary to run the simulation for a short
period of time before that number would stabilize.

Simulation.In order to evaluate the effectiveness of each
agent population, this project ran simulations using Lock-

Agent —
Population AN —
Management Simulator T
System Ve =
H o H gt -~
Optimizer Manager

Figure 1: System architecture (a).

heed Martin Advanced Technology Laboratories’ CSIM [3].
CSIM is a discrete-event simulator for block diagram ori-
ented systems. CSIM can be used for modeling wireless net-
works, computer networks, distributed systems, and other
systems where the discrete event approach is applicable.
The site for CSIM, where an overview of CSIM and a list of
applications CSIM is used for, can be found on-line.

GA Setup.A population of twenty chromosomes was used
for each experiment. Each agent population was encoded as
a chromosome with an allele corresponding to agent mem-
ory size, while the value of the gene was the number of such
agents in the population. The initial population was created
randomly and a uniform crossover was used between simula-
tions, with each gene having a one percent chance of muta-
tion. When a gene was mutated, the value was increased or
decreased by one agent or ten percent. Simulations were run
to evaluate the agent populations. Each simulation started
by triggering a thread, that lasted the entirety of the sim-
ulation, for every agent in a given population. All agents
performed a random walk and also had a hash of host data
updates of the size defined by the agent type. Every data
update was time-stamped at the moment the agent collected
the data from the host. An agent’s processing and transmis-
sion times were determined by the agent’s size, as well as the
sizes and number of other agents currently on the same host
or link. While processing an agent, a host recorded infor-
mation about other nodes only if the provided information
was more up-to-date than its own. After being processed,
an agent was sent to its next randomly chosen destination.
When an agent was in the process of being sent across a link,
the amount of available bandwidth on the link decreased in
accordance with the agent’s size. If an agent was queued
due to a lack of available bandwidth, it attempted retrans-
mission every two CSIM seconds until it was sent.

System Behavior Over Tim& the first experiment, a
randomly generated topology was used. This was done by
adding one node at a time assigning a random number of
neighbors to the added node ranging from one to the cur-
rent number of other nodes on the network at that time.
Many chromosomes in the initial populations received the
default worst fitness possible due to the fact that they failed
to update some network hosts. With each generation, the
number of good chromosomes increased until they started
converging to a particular composition. Each experiment
was stopped after 200 generations because although better
chromosomes could be found, the fitness would not improve
enough to make time spent simulating worthwhile.

Best agent population over time (b).
network (c). Initial and final best chromosomes (d).

1086

Optimal Chromosomes
Memory | Agent Amount
Size Initial | Final

= 1 25 26

_ 2 42 17

- 3 45 3

/&A - 1 13 12
SN 5 48 55

6 29 23

e 7 11 11
e g 62 2
9 0 6

: I CE 10 65 a1

Optimal populations for each

Experiment 1 (Random Network)
Network Size 10 nodes
Network Type Random

Simulation Length 1500
Search Space 0-700
Initial Chromosome’s Latency 750.656
Best Chromosome’s Latency 311.151

Table 1: Setup and Latency

A Topology’'s Effect on System Behavigh idealized
spectrum of network topologies, from linear to completely
connected, corresponding to people moving in single-file for-
mation, was used as the underlying topology for the exper-
iments. In each subsequent experiment, the connectivity of
the graph increased by one until it was fully connected in the
final experiment, as shown in Figure 1(c). In the first net-
work, comprised of a single-file of nodes, the optimal agent
population composition was two agents of the largest mem-
ory size permissible. The very small agent population was
due to there being only one possible path between every pair
of nodes. An increase in agents meant more possible queu-
ing. Only agents with a full memory size were used because
an agent of any other type would never be able to carry
information about a node from one end of the network to
the other end. With each increase of connectivity, the use
of agents with smaller memory sizes became more and more
frequent. This was attributed to the fact that these agents
could be transmitted and processed faster, and could also
provide information to more nodes as the number of paths
between nodes increases.

3. CONCLUSIONS

In this paper we presented a search based approach to
the problem of software configuration systems as it applies
to MAS. We empirically validated its correctness and appli-
cability to the domain of mobile ad hoc networks and also
showed some useful correlations between the network topol-
ogy and the composition of the agent population performing
the data dissemination tasks.

4. REFERENCES

[1] V. Cicirello et al. Designing dependable agent systems for
MANETSs. IEEE Intelligent Sys., 19(5):39-45, 2004.

[2] M. Peysakhov, V. Cicirello, W. Regli. Ecology based
decentralized agent management. Proc. of FAABS, 2004.

[3] H. Schwetman. Csim: a c-based process-oriented simulation
language. Proc. of Winter Sim. Conf.-18, pp. 387 — 396, 1986.

[4] E. Sultanik et al. Implementing secure mobile agents on an ad
hoc wireless network. In Proc. of IAAI, 2003.

